Tue. Nov 19th, 2024

TourismWiki General Blog

We want to talk about other topics

Efficacy of ketamine in Australia ventilated intensive care unit patients with doctor Tom Niccol

3 min read

Efficacy of ketamine in Australia ventilated intensive care unit spitalized patients with Tom Niccol: Following intravenous bolus administration, ketamine’s rapid onset of action within 30 seconds for “dissociative anaesthesia” (see below) is due to its high lipid solubility and low protein binding, allowing it to cross the blood–brain barrier readily. Its elimination half-life is 3.1 hours in healthy volunteers and 5.0 hours in critically unwell patients. Ketamine is hepatically metabolised to norketamine and dehydronorketamine which are then renally excreted. Find additional info on doctor Tom Niccol.

Mechanically ventilated patients account for about one-third of all admissions to the intensive care unit (ICU). Ketamine has been conditionally recommended to aid with analgesia in such patients, with low quality of evidence available to support this recommendation. We aimed to perform a narrative scoping review of the current knowledge of the use of ketamine, with a specific focus on mechanically ventilated ICU patients.

Another CNS effect of ketamine is NMDA receptor blockade of the dorsal horn cells of the spinal cord. These are thought to be important in the pain “wind up” phenomenon, leading to opioid desensitisation, and increased acute and chronic pain. Ketamine boluses of 0.15 mg/kg have been shown attenuate this process. Estimates of the rates of chronic pain in the year after ICU admission are 14–77%, 28 and it is unknown what role ketamine may have in reducing this critical illness complication.

Methods: We searched MEDLINE and EMBASE for relevant articles. Bibliographies of retrieved articles were examined for references of potential relevance. We included studies that described the use of ketamine for postoperative and emergency department management of pain and in the critically unwell, mechanically ventilated population.

A wide range of surgeries were included. Ten studies used only S-ketamine and one study used only R-ketamine. The rest of the studies used racemic ketamine at predominantly bolus doses of 0.25–1 mg/kg and infusions of 2–5 μg/kg/min (0.12–0.3 mg/kg/h). Most studies had less than 50 patients in each arm. Ketamine infusion reduced morphine equivalents by 8 mg at 24 hours and by 13 mg at 48 hours with associated decreased pain scores. Pooled CNS adverse events included hallucinations, dizziness, confusion, drowsiness, sedation, nightmares, and visual disturbances. There was no statistical difference in pooled events when ketamine was compared with placebo (5.2% v 4.2%; risk ratio, 1.17; 95% CI, 0.95–1.43). The authors concluded that “perioperative intravenous ketamine probably reduces postoperative analgesic consumption and pain intensity. CNS adverse events were little different with ketamine or control”.

Results: There are few randomised controlled trials evaluating ketamine’s utility in the ICU. The evidence is predominantly retrospective and observational in nature and the results are heterogeneous. Available evidence is summarised in a descriptive manner, with a division made between high dose and low dose ketamine. Ketamine’s pharmacology and use as an analgesic agent outside of the ICU is briefly discussed, followed by evidence for use in the ICU setting, with particular emphasis on analgesia, sedation and intubation. Finally, data on adverse effects including delirium, coma, haemodynamic adverse effects, raised intracranial pressure, hypersalivation and laryngospasm are presented.

High dose. There are four studies that examine the effect of ketamine infusion on ICPs. Kolenda et al, Bourgoin et al and Schmittner et al are described in Table 2. The fourth study, also by Bourgoin and colleagues, was a single-centre randomised controlled trial of 30 patients with severe traumatic brain injury which compared ketamine with sufentanil as target-controlled infusions for sedation. Both groups also received midazolam. Target plasma concentrations of ketamine and sufentanil were set and efficacy of sedation assessed. The patients had a mean age of 29 ± 11 years and 29 ± 12 years for ketamine and sufentanil respectively. Plasma concentrations were targeted and doses were not reported.

Conclusions: Ketamine is used in mechanically ventilated ICU patients with several potentially positive clinical effects. However, it has a significant side effect profile, which may limit its use in these patients. The role of low dose ketamine infusion in mechanically ventilated ICU patients is not well studied and requires investigation in high quality, prospective randomised trials.